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A B S T R A C T   

Dichlorvos (DDVP) is an organophosphorous insecticide which is classified as “highly hazardous” Class 1B 
chemical by World Health Organization (WHO) and largely misused for the purpose of self-poisoning in 
developing countries. Forensic toxicology laboratories are routinely encountering cases of pesticide poisoning 
due to their fatal intoxication. Herein; a method is described based on vortex-assisted dispersive liquid–liquid 
microextraction (VA-DLLME) coupled with Gas Chromatography-Mass Spectrometry (GC–MS) for the determi-
nation of an organophosphorous insecticide; dichlorvos (DDVP) in human autopsy samples (blood, stomach 
content and liver). Under the optimum conditions, the method was found to be linear in the range of 0.5–10 µg 
mL− 1 and 1.5–10 µg g− 1 for blood and tissue samples, respectively. Limit of quantification was set at 0.55 µg 
mL− 1 and 1.1 µg g− 1 for blood and tissue samples, respectively. Intraday and inter-day precisions were less than 8 
and 12 %, respectively. Good recoveries in the range of 86–95 % were obtained for the proposed procedure. The 
method has been satisfactorily applied for the determination of DDVP in autopsy samples from two different 
cases received in our laboratory. In comparison to previous methods; the proposed method is relatively short, 
high sample throughput, inexpensive and adheres to the principles of green analytical chemistry (GAC) for 
determination of DDVP in human autopsy samples. The method can be adopted in forensic toxicological labo-
ratories for analysis of DDVP in autopsy samples. In addition, the green character of the proposed method was 
evaluated using ComplexGAPI procedure.   

1. Introduction 

Dichlorvos (O, O-dimethyl 2,2-dichlorovinyl phosphate; DDVP) is a 
commonly used insecticide worldwide belonging to the organophos-
phate family. In developing countries, DDVP is still a frequently used 
agricultural and household insecticide [1]. In addition to its intended 
function, DDVP has also occasionally been used as a poison for homi-
cidal and suicidal intent. [2–5]. DDVP is available under many trade 
names, such as Vapona, Nuvan, Atgard, Phosvit, Sniper, etc. The World 
Health Organization (WHO) has classified it as “highly hazardous” 
chemicals in class 1B [1]. The irreversible inhibition of the enzyme 
acetylcholinesterase, which is responsible for the hydrolysis of the 
neurotransmitter acetylcholine, causes DDVP toxicity. As a result of the 
accumulation of acetylcholine in synaptic clefts, nerve function is dis-
rupted, and symptoms of intoxication in the central and peripheral 

nervous systems are produced. Nausea, vomiting, diarrhoea, lacrima-
tion, perspiration, salivation, and bradycardia are among the symptoms 
[1–6]. In cases of acute poisoning, death occurs due to inhibition of the 
respiratory centre in the brain stream, which results in respiratory pa-
ralysis and failure [3]. 

The analysis of DDVP from biological samples, especially human 
autopsy samples such as blood and tissue, is a tedious task owing to the 
complex nature of these matrices, and therefore limited reports are 
available in the literature for its analysis. From samples of porcine tissue, 
DDVP was extracted using solid phase extraction (SPE) and liquid–liquid 
extraction (LLE), and then evaluated using either gas chromatography 
(GC) or liquid-chromatography tandem mass spectrometry. (LC-MS/MS) 
[7,8]. Beside tissue samples, SPE based on specialized sorbents has also 
been applied for the extraction of DDVP and other organophosphates 
from vegetables and aqueous samples [9–11]. Additionally, DDVP was 
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extracted using LLE from matrices like environmental water, beverages, 
plasma, and human urine samples. [12–13]. However, these methods 
employ complex multistep protocols for extraction of pesticides, which 
are lengthy and require an additional pre-concentration step before final 
instrumental analysis. Furthermore, LLE in combination with gas 
chromatography-mass spectrometry (GC–MS) has been utilized for 
monitoring organophosphorous insecticide concentrations in plasma 
and serum samples of patients with acute poisoning [14–15]. In cases of 
fatal intoxication, however, plasma and serum are scarce; instead, whole 
blood and tissue materials are the most abundant samples. Since the 
nature of each biological sample is different, an exclusive analytical 
method has to be developed for the analysis of DDVP in human autopsy 
samples. 

The implementation of microextraction techniques, which need the 
least amount of sample and extraction solvent (zero to microliters), can 
address the shortcomings of SPE and LLE that were stated above. 
Microextraction methods have also been shown to be quick, environ-
mentally friendly, economical, and to give excellent enrichment factors, 
extraction efficiencies, and sample throughput [16–19]. Organophos-
phorous pesticides have been extracted using a variety of micro-
extraction procedures, including solid-phase microextraction (SPME), 
single drop microextraction (SDME), and hollow fiber liquid phase 
microextraction (HF-LPME) [20–22]. However, these methods are 
limited to relatively simple matrices such as water samples. Addition-
ally, SPME fibers require specific maintenance and preservation because 
they are delicate by nature, expensive, and fragile [23]. Similar to this, it 
is difficult to maintain the stability of tiny droplets of organic solvent 
during the extraction process with SDME [24]. Therefore, a thoroughly 
optimized and validated assay based on a simple and cost-effective 
microextraction technique is still needed for determination of DDVP in 
human tissue and blood samples which will be useful for toxicological 
studies involving its fatal intoxication. 

Rezaee et al. established dispersive liquid–liquid microextraction 
(DLLME) in 2006. A scaled-down version of LLE; i.e. DLLME has grown 
immensely popular among analytical chemists [25]. An extractant, 
dispersion, and an aqueous sample make up the ternary components of 
the DLLME solvent extraction system. The traditional DLLME procedure 
entails quickly injecting a suitable extractant and dispersant mixture 
into a water sample that contains the target analytes. As a result, the 
extraction solvent is evenly distributed throughout the aqueous phase, 
creating an emulsion. The tremendously high contact area between the 
extractant and the aqueous sample at this time causes a rapid attainment 
of equilibrium and prompts the extraction of analytes [25]. 

DLLME is distinguished by its capacity to hyphenate with a variety of 
analytical equipment and its consumption of a tiny amount of extraction 
solvent (in the microliters range), ease of operation, low cost, and high 
enrichment factors. DLLME and its variants has been widely applied for 
determination of various analytes in diverse range of matrices including 
cypermethrin and its metabolites in rat tissue, clenbuterol in porcine 
tissue, polybrominated diphenyl ether in aquatic animal tissues, quin-
olones in swine muscles etc.[26–31]. However, to the best of our 
knowledge, there are only a small number of uses of DLLME from human 
tissue samples, including acetaminophen in autopsy samples, metha-
done and tramadol from postmortem vitreous humor, antidepressants in 
pericardial fluid, and parabens from breast tumor tissue. [32–35]. 

Organophosphorous pesticides have been used for pest management 
on a global scale for a long time. However, due to their easy and cheap 
availability, they have been extensively misused for the purpose of self- 
poisoning. Forensic toxicology laboratories routinely receive autopsy 
samples where such poisoning is suspected. As discussed above, the 
current analytical methods include LLE and SPE which are time 
consuming, laborious and consumes large volumes of toxic organic 
solvents. However, since the emergence of green analytical chemistry 
(GAC), various microextraction and miniaturized sample preparation 
methods have been developed and applied in forensic toxicology anal-
ysis [36]. 

Herein, an analytical method based on VA-DLLME-GC–MS is devel-
oped and validated for the quick, simple, affordable, and environmen-
tally friendly determination of DDVP in complex matrices (human 
autopsy samples: blood, liver and stomach content). There are multiple 
factors which can affect the extraction efficiency of VADLLME such as: 
type and volume of extraction solvent, type and volume of disperser 
solvent, pH, ionic strength, speed and time of vortex agitation. In order 
to obtained best extraction efficiency for DDVP, all of the above pa-
rameters were studied and optimized. Finally, the developed method has 
been applied in two cases of fatal intoxication of DDVP to demonstrate 
the suitability of the proposed method. 

2. Case history 

Case 1. A 21-year-old unmarried Indian man from Chandigarh City who 
was being treated for a chronic disease was admitted to a local hospital’s 
emergency department for an unknown poisoning. The patient died during 
course of treatment. No external injuries or abnormalities were observed 
during postmortem examination. Lung, liver, spleen and kidney were found to 
be congested and around 100 mL of greenish liquid was present in the 
stomach. The approximate time interval between death and postmortem was 
9 h at local hospital. 

Case 2. In another case, a chronic alcoholic 50-year-old Indian male from 
Chandigarh was admitted to a local hospital after consuming an unknown 
poison. The patient was in gasping stage and his blood pressure and pulse were 
unrecordable. Smell of kerosene with increased oral secretion and eye miosis 
was observed. No external injuries were seen. However, the victim died during 
the treatment. During autopsy; congestion were observed in lungs, liver and 
kidneys. The stomach contained 250 mL of a bluish-green semi-solid mate-
rial, and the mucosa was extremely congested. 

3. Materials and methods 

3.1. Reagents and chemicals 

Until otherwise stated, all chemicals and reagents used in this study 
were of analytical grade. Certified Reference Material of DDVP in 
powdered form was obtained from AccuStandard (New Haven, USA). 
Ethanol (EtOH), methanol (MeOH), acetonitrile (ACN), and acetone 
(ACE) were purchased from LobaChemie (Mumbai, India) and were used 
as disperser solvents. Whereas, chloroform (CF), dichloromethane 
(DCM), ethyl acetate (EA), hexane (HEX), cyclohexane (CHX) were used 
as extraction solvent and provided by Merck (Darmstadt, Germany). 
Ultrapure water was used throughout the work. Working standard so-
lution of DDVP was prepared in MeOH at 100 µg mL-1and stored at ~ 
4 ◦C until analysis. This was used to fortify biological matrices for 
optimization and validation studies. 

3.2. Biological samples 

Postmortem blood and tissue samples of above described cases of 
DDVP fatal intoxication were collected by Department of Forensic 
Medicine and Toxicology at different Government Hospitals of Chandi-
garh (India). The collected samples along with authorization certificates 
were submitted by law enforcement agencies to our laboratory for 
toxicological examination. In order to prepare fortified samples for 
method development and validation purposes, similar matrices were 
used which were previously tested negative for DDVP and other drugs 
and poisons. The study has been approved by Institutional Ethical 
Committee of CFSL (Approval No. 1109) and was performed according 
to guidelines by ICMR (Indian Council of Medical Research) [37]. 

3.3. Systematic toxicological analysis (STA) 

Exhibits from both cases were subjected for routine STA in our 
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laboratory for the detection of volatile poisons (EtOH and MeOH), 
abused drugs (opioids, heroin, cannabinoids, amphetaminesetc.), seda-
tive and hypnotic drugs (barbiturates and benzodiazepines), antide-
pressants (amitriptyline, paroxatine etc.), antipsychotic drugs, gaseous 
poisons (cyanide and carbon monoxide), and inorganic poisons such as 
aluminum phosphide and heavy metals etc. According to the mono-
graph, thin layer chromatography (TLC) was employed for drug and 
pesticide screening. Volatile poisons were analyzed by headspace-gas 
chromatography-flame ionization detector (HS-GC). TLC preliminary 
analysis revealed the presence of DDVP in both cases. 

3.4. Vortex-assisted dispersive liquid–liquid microextraction (VADLLME) 

Exactly 0.5 g of stomach content and tissue sample (i.e. liver) was 
homogenized in 5 mL of ACE using a tissue homogenizer (Remi Labo-
ratory Instruments, Mumbai, India). The supernatant of this solution 
was separated by centrifugation at 5000 rpm for 5 min. One mL of this 
supernatant along with 100 µL of CF was instantly injected into 2 mL of 
ultrapure water with the help of a syringe. This solution was then vortex 
agitated at 2000 rpm for 2 min to promote the process of emulsification. 
The cloudy solution thus obtained was immediately centrifuged for 3 
min at 5000 rpm. Approximately 80 µL of CF was sedimented at the 
bottom of centrifuge tube and 2 µL of it was injected into GC–MS system 
for analysis. 

For blood samples, 0.5 mL of whole blood sample was placed in a 15 
mL centrifuge tube followed by addition of 500 µL of MeOH or ACN for 
the purpose of deproteinization of blood protein. This was centrifuged 
for 5 min at 5000 rpm to get a clear supernatant. Two mL of this su-
pernatant was subjected for DLLME as follows: a mixture of disperser 
solvent (1 mL ACE) and extraction solvent (100 µL of CF) was instantly 
injected into this supernatant. This was vortex agitated at 2000 rpm for 
2 min to enhance the process of emulsification. Rests of the steps were 
similar to the protocol as described above. Schematic representation of 

VA-DLLME-GC–MS process has been shown in Fig. 1. 

3.5. GC–MS analysis 

GC–MS analysis of extracts obtained after DLLME was performed on 
Shimadzu Nexis GC – 2030 coupled with QP-2020 NX mass spectrometer 
having installed with SH-Txi-5Sil MS capillary column (30 m length ×
0.25 mm internal diameter × 0.25 µm film thickness) with a stationary 
phase of 5 % phenyl and 95 % dimethylpolysiloxane. Exactly 2 µL of the 
extract under split mode (split value 10) was injected into GC–MS at an 
injection port temperature of 250 ◦C with the help of Shimadzu AOC 20i 
Plus Auto sampler. Vaporized analytes from the injection port were 
carried into the column with helium gas at a flow rate of 1 mL min− 1. 
Oven temperature was initially kept at 60 ◦C for 1 min, followed by an 
increment up to 250 ◦C at a rate of 15 ◦C/min, resulting into total 
runtime of 13.67 min. Electron Impact (EI) mode was used to ionize the 
analytes with electron energy of 70 eV. Temperatures of transfer line 
and ion source were kept at 200 ◦C, respectively with a solvent delay of 
3 min. Mass spectra was obtained in the range of 50–500 amu in full scan 
mode. The peak of DDVP was observed at 7.53 min in total ion chro-
matogram (Fig. 2). 

3.6. Method validation 

Blood, stomach content and liver samples were fortified with DDVP 
at different concentrations. Tissue samples were spiked in the range of 
1.5–10 µg g− 1, whereas blood samples were spiked in the range of 
0.5–10 µg mL− 1. All the fortified samples were processed and analyzed 
according to the developed procedure. Limit of detection (LOD) and 
limit of quantification (LOQ) were used to express sensitivity of the 
method and were evaluated at the lowest concentration of DDVP with a 
signal to noise ratio 3:1 and 10:1, respectively. For each matrix, 
repeatability and reproducibility were studied at three different 

Fig. 1. Schematic representation of proposed protocol; (A) homogenization / deproteinization of tissue and blood samples, (B) VADLLME process using 1000 µL of 
ACE (homogenate) and 100 µL of CF, (C) vortex agitation at 2000 rpm for 2 min, (D) centrifugation at 5000 rpm for 3 min; (E) collection of sedimented phase for 
further analysis (F) GC–MS analysis (G) Total ion chromatogram (TIC) of DLLME extract. 
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concentrations in triplicates and were recorded as percent intra-day 
precision and inter-day precision, respectively (%RSD) following 
developed procedure. 

4. Results and discussion 

4.1. Selection of disperser solvent and optimization of its volume 

The main goal of the disperser solvent in DLLME is to increase the 
surface area of contact between the extraction solvent and the aqueous 
sample. Utilizing disperser solvents that are concurrently miscible in the 
extraction solvent and aqueous phase allows for this. Herein, most 
commonly used four disperser solvents viz. EtOH, MeOH, ACN and ACE 
were evaluated. An experiment was conducted where 0.5 g of blank 
tissue sample was fortified with DDVP and homogenized in 5 mL of these 
disperser solvents (EtOH, MeOH, ACN and ACE). This sample was then 
centrifuged and supernatant was used as disperser solvents in DLLME 
process. Each disperser solvent (500 µL) along with DCM (200 µL, 
extraction solvent) was instantly injected into 5 mL of ultrapure water 
fortified with DDVP at concentration of 1 µg mL− 1. In order to intensify 

the emulsion formation the sample was vortex agitated for 1 min at 
1500 rpm. This mixture was then centrifuged to get a clear sedimented 
phase for GC–MS analysis. It is evident from Fig. 3a that highest detector 
response for DDVP was obtained when ACE was used when compared to 
other disperser solvents. Therefore, ACE was selected as disperser sol-
vent in all further experiments. 

Additionally, an experiment was carried out using various volumes 
of ACE in the range of 200–1500 µL (200, 400, 600, 800, 1000, 1300, 
and 1500 µL) together with 200 µL of DCM in order to optimize the 
volume of ACE. The findings showed that as ACE volume increased from 
200 µL to 1000 µL, the peak areas for DDVP also increased. Beyond this 
volume, they, however, usually start to decline. Additionally, when the 
volume of ACE increases, the amount of sedimented phase that was 
collected after centrifugation likewise decreases. Additionally, this 
makes it more difficult to collect sedimented phase for instrument 
analysis. As a result, the ACE volume was set at 1000 µL for all subse-
quent tests (Fig. 3b). 

Fig. 2. Total ion chromatogram (TIC) of stomach content and standard DDVP obtained after VA-DLLME-GC–MS (above) and NIST mass spectra of DDVP (below).  
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4.2. Selection of extraction solvent and optimization of its volume 

In classical DLLME; extraction solvents with density greater than 
water are used for extraction; however, solvents with lower density than 
water have also been used due to their easy collection after centrifuga-
tion. Therefore, we compared a total of five extraction solvents, of which 
three (HEX, CH, and EA) had a lower density than water and two had a 
higher density (CF and DCM). An experiment was conducted by mixing 
1000 µL of ACE obtained from above described process with each 
extraction solvent (200 µL). The sample was processes as described 
above and sedimented phase / supernatant phase was collected and 
analyzed by GC–MS. Results showed that CF as the extraction solvent 
yielded the maximum peak area with the fewest matrix interferences, 
followed by DCM and EA (Fig. 4a). Therefore, it was decided to use CF as 
extraction solvent for all further experiments. 

After selecting CF as extraction solvents, a set of experiment was 
further conducted to optimize its volume which is crucial for improved 
extraction efficiency of DLLME. CF was mixed with 1000 µL of ACE in 
various volumes ranging from 100 to 500 µL, and DLLME was carried 
out as previously described. The resulting mixture was agitated on a 
vortex shaker for 1 min at 1500 rpm followed by centrifugation to get a 

clear sedimented phase for GC–MS analysis. Fig. 4b makes it clear that 
using CF at a volume of 100 µL resulted in the greatest response. Dilution 
causes the detector response for DDVP to decrease with increasing CF 
volume. Therefore, the volume of CF was set at 100 µL for all subsequent 
experiments. 

4.3. Optimization of volume of water, vortex agitation time and speed 

Herein, water is being used as a component of ternary solvent system 
and also facilitates the process of emulsification. Therefore volume of 
water was also optimized in the range of 2–5 mL. Maximum peak areas 
were obtained with volume of water was kept at 2 mL (Fig. 5a). It is also 
worth noting that as the volume of water increases, the amount of 
sedimented phase of CF decreases, resulting in lower peak areas. As a 
result, DLLME was performed with 2 mL of aqueous phase. 

The DLLME technique’s emulsification process can be promoted 
simply and affordably by vortex agitation. By increasing the interfacial 
area between these two phases, vortex agitation promotes the mass 
transfer of the analyte by facilitating the production of tiny droplets of 
extraction solvents that are dispersed in aqueous phase. This facilitates 
quick partition equilibrium within minutes [38,39]. Therefore, effect of 

Fig. 3. Disperser solvent (a) selection of disperser solvent; and (b) study of volume of ACE (µL).  
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vortex agitation speed and time was investigated in the range of 
1000–5000 rpm and 0.5–5 min, respectively, keeping the previously 
described parameters at their optimum values. Results indicated that 
response of DDVP increases as the vortex agitation speed increases up to 
2000 rpm, however they stayed almost uniform above this speed. This 
indicates that sufficient equilibrium has been achieved at this point 
(Fig. 5b). Further, keeping the vortex agitation speed fixed at 2000 rpm; 
time of vortex agitation was also optimized. It was observed that 
extraction efficiency of DLLME increases from 0.5 to 2 min of vortex 
agitation time and stayed uniform beyond 2 min. Therefore, in further 
samples were vortexed for 2 min at 2000 rpm (Fig. 5c). 

4.4. Effect of pH and ionic strength 

The effect of pH on extraction efficiency of VA-DLLME was evaluated 
in the range of 4 – 8. An experiment was designed where pH of aqueous 
phase was adjusted by 1 M HCl and 1 M NaOH solution. All the pa-
rameters were kept at their optimum values as described earlier. The 
findings showed that the optimum amount of DDVP could be extracted 
when the aqueous phase’s pH was kept at 5. (Fig. 5d). 

Further, effect of salt addition was also evaluated by adding NaCl in 
the range of 0–10 % (w/v) in the aqueous phase. Addition of salt in the 
aqueous phase increases the extraction efficiency of DLLME by 

decreasing the solubility of the analyte. However, in this case, there was 
no significant improvement observed in the extraction of DDVP, and 
hence, no salt was added during the DLLME process for all further ex-
periments (Fig. 5e). 

4.5. Performance of the proposed method 

The proposed method, VA-DLLME, has been thoroughly validated in 
human autopsy samples such as blood, stomach content, and liver for-
tified with known amounts of DDVP under optimized conditions for 
linearity, precision, recovery, and sensitivity. The autopsy samples were 
used in accordance with the ICMR guidelines [37]. External calibration 
graphs for DDVP in each matrix were prepared by plotting peak areas of 
DDVP on y-axis and corresponding concentration on x-axis. Satisfactory 
linearity in the range of 0.997–0.999 was observed (Table 1A). In order 
to keep the proposed method convenient and simple for the purpose of 
quantification of DDVP; no internal standard was added, as this would 
impose one more additional step in the protocol which could lead to 
higher errors in quantification. This choice was also supported by pre-
vious literature where external calibration methods were found more 
convenient than internal standard methods [40–42]. 

The LOD and LOQ were evaluated at signal to noise ratio of 3:1 and 
10:1, respectively. LOD and LOQ for blood were found to be 0.17 and 

Fig. 4. Extraction solvent (a) selection of type of extraction solvent, (b) study of volume of CF (µL).  

R. Jain et al.                                                                                                                                                                                                                                     



Journal of Chromatography B 1215 (2023) 123582

7

0.55 µg mL− 1. Similarly for stomach content and tissue homogenate 
(liver) samples the values of LOD and LOQ were 0.31 – 0.33 µg g− 1 and 1 
– 1.11 µg g− 1, respectively. Intra and inter-day precisions were evalu-
ated at three different concentration levels of linearity range and were 
found to be less than 8 and 12 % (n = 3), respectively. Recovery studies 

were also performed at similar concentration levels as of precision. The 
relative recoveries which were obtained by comparing the analytical 
results of extract of blank sample spiked with DDVP with the same 
concentration of standard DDVP. Good relative recoveries in the range 
of 86–95 % were obtained by the proposed procedure (Table 1A). 

Fig. 5. Effect of (a) volume of water (b) vortex frequency (c) vortex agitation time (d) pH and (e) IS on DLLME.  

Table 1A 
Method validation parameters for VA-DLLME-GC–MS analysis of DDVP in autopsy samples (n = 3).  

Matrix  R2 LOD LOQ Calibration curve Intra-day Inter-day 

Linear range 2 5 10 2 5 10 

Blooda 0.5–10  0.999  0.17  0.5 y = (7823.6 ± 98.01)x + (26348 ± 451.9)  7.8  6.8  5.6  11.9  9.2  8.6 
Sotmach contentb 1–10  0.998  0.31  1.0 y = (4772.9 ± 80.6)x –(696.83 ± 530.5)  7.0  8.6  6.9  9.9  7.9  6.4 
Tissue homogenate (Liver)b 1.5–10  0.997  0.33  1.1 y = (4397.8 ± 100.4)x + (8778.3 ± 481.52)  6.4  7.2  4.8  10.5  8.4  7.4 

a = concentration expressed in µg mL− 1. 
b = concentration expressed in µg/g. 
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Absolute recoveries were calculated as the ratio of concentration found 
to the true concentration of DDVP in blood and tissue samples 
(Table 1B). Stability of DDVP was accessed by analyzing the extract after 
72 h of extraction. The peak areas of such samples were compared with 
those of freshly extracted samples by proposed procedure. Variation of 
> 15 % in concentration accuracy was deemed to be unstable sample. 

The proposed method has been compared with previously reported 
analytical methods for determination of DDVP in biological matrices 
and the comparison has been shown in Table 2. It can be observed from 
the comparison that, proposed method offered comparable sensitivity to 
all reported methods except at ref. [8], where LC-MS/MS was used for 
detection of DDVP, which is superior in sensitivity to GC–MS in this case. 

4.6. Evaluation of green character of the method 

The proposed method has been evaluated for its green character by 
using complementary green analytical procedure index (ComplexGAPI), 
which has been utilized as a comprehensive tool in many studies for this 
purpose [43–53]. This procedure enables a methodical assessment of the 
analytical protocol taking into account sampling preparation and anal-
ysis, reagents and solvents, apparatus, type of method (qualitative and/ 
or quantitative); and pre-analytical processes. A pictogram made up of 
five pentagons which are produced by ComplexGAPI using a red, yellow, 
and green colour scale. The respective criteria of greenness are satisfied 
if the pentagon or hexagon is green. Fig. 6 displays the ComplexGAPI 
pictogram created for the suggested procedure. 

The red color in the first pentagon corresponds to offline sampling 
since sample were collected from dead body of victims at local hospital 
and transported to the laboratory where the samples were preserved 
under refrigerated conditions until analysis. The red color in the second 
pentagon corresponds to the use of non-green solvents i.e. chloroform 
and acetone which were used as extraction and disperser solvent in this 
study. The red color in the central pentagon is due to the analytical 
method which required extraction. 

4.7. Application to real forensic samples 

Under its optimized and validated conditions, the proposed VA- 
DLLME-GC–MS method was successfully used to determine the presence 
of DDVP in autopsy samples collected from individuals who had died 
after consuming it, as stated in section 2 (case history). Routine STA of 
blood samples has detected EtOH at a concentration of 33.25 mg % in 
case no. 2. TLC was performed for screening of pesticides in tissue 
samples and DDVP was found positive in both cases. The amount of 
DDVP detected in blood, stomach contents and liver tissues of both cases 
is given in Table 3.Table 4 compares the amount of DDVP detected in 
postmortem specimens by proposed method with those reported in 
literature for similar fatal cases. 

5. Conclusion 

In the present study; VADLLME-GC–MS method has been developed 
and validated for the determination of DDVP in human autopsy samples. 
The novelty of the proposed method is consumption of least amount of 
organic solvent and sample, low-cost, simplicity, rapidity and high 

extraction efficiencies. The method involves homogenization of tissue 
samples in ACE and further use of this homogenate as disperser solvent 
in DLLME. The sample preparation and analysis time for a single sample 
is less than 30 min. The proposed method can be utilized by forensic 
toxicological laboratories for routine analysis of cases of organophos-
phorous poisoning. 

Compliance with ethical standards 

Table 1B 
Recoveries of VA-DLLME-GC–MS procedure.  

Matrix Relative recovery (%) Absolute recovery (%) 

2 5 10 2 5 10 

Blooda  88.3  90.6 95 89 99  100.2 
Stomach contentb  84.8  87.0 89.2 111.2 98.6  101.1 
Tissue homogenate (Liver)b  86.1  89.5 93.4 101.8 104.2  99.2 

a = concentration expressed in µg mL− 1. 
b = concentration expressed in µg/g. 

Table 2 
Comparison of proposed method with previously reported method for DDVP in 
biological matrices.  

Biological 
matrices 

Extraction 
technique 

Detection 
technique 

Figures of 
merit 

Reference 

Blood, urine, 
stomach 
content, heart 

LLE HPLC-MS/ 
MS  

• Precision: 
3.97 %  

• Accuracy: 
93.9 %  

• LOD: 0.5 µg 
mL− 1  

• LOQ: 1 µg 
mL− 1 

[2] 

Blood, heart, 
kidney, lung 

LLE GC–MS  • Precision: 
13.8 %  

• Accuracy: 
100.2 %  

• Linearity: 1 – 
10 µg mL− 1  

• LOD: 0.275 
µg mL− 1  

• LOQ: 1 µg 
mL− 1 

[3] 

Blood, brain, 
heart, lung, 
liver, kidney, 
spleen, urine, 
stomach 
content 

LLE GC-FID  • Linearity: 1 – 
80 µg mL− 1 

[5] 

Pork SPE GC  • Linearity: 0.2 
– 1 µg mL− 1  

• Recovery: 
100 – 120 %  

• Precision: 
2.6 % 

[7] 

Animal tissues 
(pork, muscle 
and casing) 

LLE LC-MS/MS  • Precision: 
less than10.6 
%  

• Recovery: 
85–106 %  

• LOD: 0.07 µg 
kg− 1  

• LOQ: 5 µg 
kg− 1  

• Linearity: 25 
– 500 µg/L 

[8] 

Blood, stomach 
content, liver 

VA-DLLME GC–MS  • LOD: 0.17 µg 
mL− 1& 0.33 
µg g− 1  

• LOQ: 0.55 µg 
mL− 1& 1.1 
µg g− 1  

• Recovery: 86 
– 95 %  

• Precision: 
less than11.9 
%  

• Linearity: 
0.5–10 µg 
mL− 1& 1.5 – 
10 µg g− 1 

This study 

Abbreviations: LLE: liquid–liquid extraction; HPLC-MS/MS: high performance 
liquid chromatography-tandem mass spectrometry; GC–MS: gas 
chromatography-mass spectrometry; GC-FID: gas chromatography-flame ioni-
zation detection; SPE: solid-phase extraction; LC-MS/MS: liquid 
chromatography-tandem mass spectrometry; VA-DLLME: vortex-assisted 
dispersive liquid–liquid microextraction. 
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